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Abstract 
 

Economic systems produce robust statistical patterns in key sate variables including 
prices and incomes. Statistical equilibrium methods explain the distributional proper- ties 
of state variables as arising from specific institutional and behavioral postulates. Two 
traditions have developed in political economy with the complementary aim of 
conceptualizing economic processes as irreducibly statistical phenomena but differ in 
their methodologies and interpretations of statistical explanation. These conceptual 
differences broadly mirror the methodological divisions in statistical mechanics, but also 
emerge in distinct ways when considered in the context of social sciences. This paper 
surveys the use of statistical equilibrium methods in analytical political economy and 
identifies the leading methodological and philosophical questions in this growing field of 
research.  
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1 Introduction

Market based economic systems are complex decentralized systems that give rise to spon-

taneous order in the formation of statistical moments such as average prices and incomes.

Economic outcomes are statistical in nature and typically consist of central tendencies as

well as fluctuations around these tendencies. The fact that economic systems produce stable

regularities that persist for extended periods of time permits theory formation around the

explanation and prediction of these regularities. Economic theory attempts to explain the

existence, location, and evolution of these modalities in terms of individual and collective

actions within a framework of social and economic institutions. Statistical variation in eco-

nomic outcomes poses several conceptual issues for economic theory. The first deals with

the nature of statistical fluctuations and whether or not they are endogenous to the system

and thus in need of explanation, or if they are exogenous stochastic variation irrelevant to

theory formation. The second di�culty concerns the appropriate methodological approach

to deal with statistical variation in economic outcomes at various levels of abstraction and

aggregation.

Orthodox economic theory born out of the marginalist doctrines of Walras and Marshall,

as well their modern descendant general equilibrium theory, tends to abstract away from

statistical thinking instead emphasizing the determination of stable fixed-point equilibrium

properties of an abstract completely specified economic system. Neo-Ricardian and Marxian

political economy has also tended to reason in terms of abstract notions of uniform equilib-

rium prices and incomes despite adopting an essentially statistical vision. Real experience

with markets and analysis of market data, however, reveals that economic variables such as

incomes and commodity transaction prices exhibit significant variation over time and space

giving rise to statistical distributions of these variables. The reduction of the statistical

distribution of prices to the modal or mean price simplifies economic theory greatly, but per-

force neglects the existence of disequilibrium states and the determination of higher order

moments that leaves many fundamental questions about the determination of equilibrium

unresolved.

In contrast to orthodox theory, however, the classical political economy of Smith, Ri-

cardo, and Marx recognized the essentially statistical nature of economic processes and used

it as foundation for conceptualizing equilibrium. Smith was the first to articulate a dynamic

theory to account for a tendential equalization of prices and incomes and most classical

political economists in the nineteenth century adopted some notion of “gravitational” equi-

librium. The equilibrium rate of profit and equilibrium wage rate were the centers of gravity

that reflected a uniform rate of profit for capital and uniform wage rate for workers. These
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abstractions were then used as basis for explaining other economic phenomena, including

prices, growth, distribution, social conflict, and economic policy. From the classical perspec-

tive, equilibrium was always treated as a dynamic gravitational process determined by strong

stabilizing feedbacks arising from various institutional structures. Explaining the endogenous

variation of prices and incomes was as essential to economic theory as was explaining the

central tendencies. Marx was often keen to emphasize that a capitalist economy in absence

of these endogenous fluctuations would cease to function altogether.

While essentially adopting a complexity perspective of economic systems (Foley, 2003;

Scharfernaker & Yang, 2020), classical political economists were unequipped with the mod-

ern scientific tools used to study complex many-bodied systems resulting in fragmented

analytical methods discordant with their theoretical outlook (Farjoun & Machover, 1983;

Langston, 1984). The issues surrounding the transformation of values into prices is perhaps

the best illustration of the kind of di�culties that arose due to the dissonance between theory

and methods working at di↵erent levels of abstraction and aggregation in classical political

economy.

Recent advances in the application of statistical mechanics and information theory to eco-

nomics has revealed the new directions for the range of applicability and validity of classical

political economic theory. These methods identify the equilibrium of a system’s state vari-

ables as irreducibly statistical and thus driven to equilibrium probability distributions. The

statistical equilibrium approach identifies the stable configuration of these distributions as

revealing important information about the relevant institutional and behavioral constraints

that produce both the system’s central tendencies as well the generative dynamics that shape

the higher moments of these distributions.

The statistical equilibrium approach fills a lacuna in contemporary political economy

by undertaking a complete statistical description of social and economic phenomena. This

approach is squarely aligned with the theoretical and methodological principles of classical

political economy because it explicitly models the fluctuations in state variables such as

prices, profit rates, and wages, that arise from the decentralized nature of market activity

and the purposive behavior of individuals, such as workers and capitalists, interacting in

complex non-additive ways within the institutions of capitalism. While statistical equilib-

rium thinking has had a productive e↵ect in political economy in general, there is significant

disagreement on the methodological basis and interpretation of statistical explanation. Two

traditions have emerged in statistical political economy that broadly parallel those in statis-

tical mechanics: the ergodic camp which reasons in terms of infinite time averages and the

macroscopic camp that reasons in terms of system-level information. These methodologies

share many of the same philosophical conundrums and dichotomies that exist in statistical
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mechanics, but also pose many distinctive and unresolved questions in their application to

social sciences. This paper surveys the role of statistical equilibrium thinking in analyti-

cal political economy as well as the many unresolved interpretive and philosophical issues

attendant with this growing field of research.

2 Statistical Equilibrium

Statistical equilibrium methods in physics were developed in the late 19th century by Boltz-

mann (1871), Maxwell (1860) and Gibbs (1902) and were originally applied to relatively

simple thermodynamic problems such as deriving the phenomenal laws of gas behavior from

the hypothesis that gases were constituted from particles such as molecules and atoms. Sta-

tistical mechanics uses known microscopic properties of systems in order to make probabilistic

and statistical assertions about the macroscopic behavior of systems. The key theoretical

breakthrough in statistical mechanics is the idea of ensemble reasoning. The ensemble rep-

resents a collection of all conceivable microscopic configurations of a system’s N members

across all the possible individual states each one of them may take. Which microscopic

configurations are possible depends on the laws governing the functioning of the system,

such as Liouville’s equation that describes its Hamiltonian dynamics and thermodynamic

laws such as the conservation of energy. Each microscopic configuration generates a unique

macroscopic state or frequency distribution describing the relative occupancy of each indi-

vidual state across all members of the system. The entropy of a macroscopic state is simply

a combinatorial measure quantifying how many di↵erent microscopic configurations support

any given macroscopic state. The distribution or macroscopic state with maximum entropy

across all possible distributions is simply the one with the greatest support across the micro-

scopic configurations allowed by the functioning of the system. In systems where N >> 1,

the combinatorial dominance of that distribution is overwhelming, e↵ectively ensuring that

no matter where a system’s evolution started, it will statistically tend toward microscopic

configurations supporting that distribution—which we understand as a statistical equilib-

rium macroscopic state.

Physicists in the twentieth century (Jaynes, 1957) discovered that these same methods

can be applied fruitfully to a wide range of systems including biological and social systems

(Kapur, 1989; Kapur & Kesavan, 1992) particularly when viewed through the theoretical

scope of information theory (Caticha, 2007; Golan, 2018). The goal-oriented purposive be-

havior of individuals in social situations where people interact through specific institutions,

like private property, are from a statistical modeling point of view exactly like the constraints

of physical laws that characterize the statistical properties of physical systems. Statistical
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equilibrium modeling in economics, however, does not imply that social systems are repre-

sented by a “social physics” subject to immutable “social laws,” that individual social beings

are equivalent to purposeless particles, or that social science is ultimately reducible to the

physical sciences. Statistical equilibrium methods in economics attempts to identify the

relevant systemic constraints acting on a system at any point in time that shape observed

distributional outcomes of social and economic interactions.

While the economy as a whole is not in any kind of stable equilibrium most agents do

traverse similar dynamic paths over and over again creating a type of “punctuated equilib-

rium,” that may persist for extended periods of time. Social and economic institutions shape

individual actions and social interactions in remarkably robust ways. Capitalist institutions

of private property and market mediated exchange produce imperatives for labor to work

under relatively uniform conditions which inevitably shapes domestic habits as well. While

there may be significant heterogeneity in the type of work done, individuals tend not to de-

viate far from their average patterns. The same can be said of firms producing, distributing,

and marketing products, which also tends to be highly routine.1

Capitalism also creates systemic regularities independently of the details of micro-level

behavior, and often in spite of the intentions governing that behavior. These systemic reg-

ularities can be broadly understood as reflecting the fact that markets generate prices that

reduce all details to simple quantifications, and that all individuals interact interdependently

though social and economic institutions. There is an important distinction and interplay be-

tween the behavioral and systemic constraints that determine the macroscopic characteristics

of capitalist systems. Statistical equilibrium methods allow one to gain insights about the

functioning of the system from understanding the routine and repetitive aspects of reality

rather than by focusing on the much less frequent and much less structured periods of tran-

sition. This is not to downplay the importance of transitional periods, which can be highly

disruptive to and fundamentally transformative of previously stable economic patterns, but

the routine patterns of economic life that are invariably shaped by social and economic

institutions are likely to reassert themselves, even if in novel ways.

The probabilistic and statistical nature of statistical mechanics implies that it is inex-

tricably tied to the conceptual issues associated with the interpretation of probabilities.

Understanding exactly what is being asserted in a statistical equilibrium model will depend

on the general conception of the meaning of statistics and probability. Due in part to these

unresolved issues, two separate traditions developed in statistical mechanics with comple-

mentary aims but distinct methodologies which Hobson (1971) refers to as the ergodic and

1
Punctuated equilibrium is treated in non-equilibrium thermodynamics as local or momentary equilibrium

arising in systems undergoing small changes to macroscopic parameters.
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macroscopic approaches.

The ergodic view of statistical mechanics follows the perspectives of Maxwell and Boltz-

mann and derives the macroscopic behavior of a system from the evolution of micro-kinetic

behavior of weakly-interacting particles. Methodologically, the ergodic approach studies the

infinite time averages of state-space variables. The macroscopic approach to statistical me-

chanics uses known microscopic properties to study the macroscopic behavior of many-body

systems based on probabilistic reasoning alone. This view follows the insights of Gibbs and

later Jaynes (Jaynes, 1967; Jaynes, 1957) who identified Shannon (1948) information the-

ory as a logical basis for making any probabilistic assertions about incompletely specified

systems.

The lack of a universally accepted account of the theory of statistical mechanics2 suggests

that while these methods may be useful in understanding complex economic systems, there

is little expectation that economists will agree on a single correct interpretation and method-

ology in their applications of statistical mechanics to economics or even find agreement as

to what an acceptable statistical explanation amounts to.

3 Statistical Thinking in Political Economy

Statistical thinking was foundational to classical political economic theory. Adam Smith

constructed his economic theory of natural prices upon a “gravitational” equilibrium logic

that attempted to explain both the central tendencies of prices as well as the ceaseless

and endogenous fluctuations that generate these tendencies as statistical moments. In his

discussion of value and prices, Smith makes an important methodological distinction be-

tween natural price and market price of a commodity. The market prices are the amount

of money for which any particular commodity exchanges at any particular moment. These

prices fluctuate in time and space due to persistent imbalances of supply and demand. Such

fluctuations in prices and incomes were understood as a natural outcome of the perennial

di�culties of decentralized and specialized production meeting the material and social needs

of reproduction. Central to his line of reasoning was that underlying the complex process

of production and exchange was a common organizing logic of competition that generated

negative stabilizing feedbacks that regulated market prices around natural prices. Marx

adopted Smith’s notion of gravitational equilibrium and stressed the statistical and com-

binatorial logic of natural prices that made them an essentially macroscopic phenomenon.

2
As Jaynes notes, “statistical mechanics has become a queer hybrid, in which the practical calculations

are always based on the methods of Gibbs; while in the pedagogy virtually all one’s attention is given to

repeating the arguments of Boltzmann.”(Jaynes, 1967, pp. 87). See Sklar (1993) for a good overview of the

historical and philosophical issues in foundations of statistical mechanics.
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While classical political economy tended to reason in terms of a statistical methodology,

no formal analytical methods consistent with this reasoning were advanced. Neo-Ricardian

(Kurz & Salvadori, 1995) and Marxian traditions (Shaikh, 2016) have also avoided explicit

statistical consideration in theory formation instead favoring analysis based on the abstract

long-run equilibrium behavior of capitalist economies where all higher moments are assumed

away.

In the 1980s Farjoun and Machover (1983) (FM) heavily criticized the paradigm in these

traditions arguing that the impossibility of uniform prices, wages, and profit rates severely

limited the interpretive and explanatory aims of Neo-Ricardian and Marxian theory. Instead,

they argued that prices and incomes should be treated as random variables that are driven

not to a deterministic uniformity, but to time-invariant stationary probability distributions

with general forms that are “theoretically ascertainable” and “empirically verifiable.” FM’s

work was a groundbreaking attempt to construct a non-deterministic theoretical framework

for the foundations of political economy that avoided an equilibrium logic unable to account

for the observed distribution of economic variables. FM called for an explicit statistical

methodology in political economy consistent with the central themes of Smith, Ricardo, and

Marx and pointed towards statistical mechanics as satisfying this methodological criterion.

While FM o↵er a compelling argument for the relevance of statistical equilibrium methods in

political economy, their particular application of these methods to political economic theory

may have raised more questions than they answered (Scharfenaker & Semieniuk, 2017).

A diverse range of recent contributions have since renewed interest in statistical equi-

librium approaches in political economy and significantly extend the aims of FM. These

contributions are complimentary in their aims of introducing an explicit statistical method-

ology to political economy, but di↵er in their methodological prescriptions (dos Santos, 2020;

Golan, 2018; Reddy, 2020; Scharfernaker & Yang, 2020). One tradition studies the paramet-

ric statistical distributions of economic outcomes explained as ergodic solutions to stochastic

processes. This tradition has a long history in economics dating back to Gibrat (1931),

Kalecki (1945) Champernowne (1953) and Simon (1955) who looked to formalize the empir-

ical findings of Pareto (1987a, 1987b) on the distribution of personal income and wealth and

has experienced a resurgence in political economy (Alfarano, Milaković, Irle, & Kauschke,

2012; Cottrell, Cockshott, Michaelson, Wright, & Yakovenko, 2009; Shaikh, 2020; Shaikh,

Papanikolaou, & Wiener, 2014) with the development of econophysics (Lux, 2016; Mantegna

& Stanley, 1999; McCauley, 2009; Rosser Jr., 2008b; Yakovenko, 2007). The econophysics

approach to political economy argues in terms of well-specified micro-kinetic dynamics punc-

tuated by stochastic variation in order to derive the statistical equilibrium of the system as

the limiting ergodic distribution. Specifically, “the time evolution of an economic system
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is represented by an aperiodic, irreducible Markov chain and the distribution of relevant

quantities is given by the invariant distribution of the Markov chain.”(Garibaldi & Scalas,

2010, pp.224) This ergodic approach is most often adopted in economics and finance through

a class of stochastic models called drift-di↵usion models which identifies the sources of sta-

tistical e↵ects in random disturbances. While no explicit position is ever really taken on the

origins of these disturbances, that is, no specifically tychist or external interventionist posi-

tion is taken, the ontological interpretation of randomness is almost always philosophically

implicit and methodologically explicit.

The other tradition adopts the complexity perspective of social systems but identifies the

complex nature of such systems as arising from incomplete information (dos Santos, 2020;

dos Santos & Scharfenaker, 2019; dos Santos & Wiener, 2019; Foley, 1994; Scharfenaker &

Foley, 2017; Scharfenaker & Semieniuk, 2017; Scharfernaker & dos Santos, 2015; Scharfer-

naker & Yang, 2020; Yang, 2018a, 2018b). This approach originates in the ideas of Edwin

T. Jaynes (Jaynes, 1957) who identified the generality of Claude Shannon’s (Shannon, 1948)

work in information theory as a justification for the study of statistical mechanics. Jaynes

emphasized the inferential nature of all real scientific problems as arising from incomplete

information and identified entropy as a measure of information that is to be understood as

a description of a state of knowledge about a system. Jaynes’ Maximum Entropy Princi-

ple (MEP) derives the statistical equilibrium distribution by maximizing Shannon entropy

H = �
R
f(x) log f(x)dx subject to the normalization of probabilities

R
x

f(x)dx = 1 and

any other information one has about the relevant constraints acting on the system. The sta-

tistical equilibrium distribution is thus the combinatorially most probable and least biased

representation of the system’s state compatible with the imposed constraints. No assump-

tions about ergodicity or deterministic micro-kinetic dynamics are necessary. Rather, this

approach emphasizes the combinatorial and Laplacian logic of making inferences when faced

with incomplete information about the detailed dynamics of a system. From this perspective,

randomness is always understood as epistemological representation of our lack of knowledge

about a particular phenomenon. The maximum-entropy principle of inference is thus a

general principle for which statistical mechanics is one particular application.

4 Ergodic Approaches

4.1 Background

The ergodic approach to studying the distributional outcomes of economic variables rea-

sons in terms of well-defined micro-kinetic processes that describe the general behavior of
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individual agents coupled with ongoing random transitions between states. In early thermo-

dynamic theory the ergodic approach begins with a single particle in a multi-dimensional

space in which a single point represents the momentum and position of the particle at a

particular time. The evolution of this point through the phase space is taken as a represen-

tation of the entire system and the equilibrium properties of the system’s state variables are

computed by calculating the infinite time averages. In modern thermodynamics probabilities

are not attached to the state of a single particle but rather to the state of the entire system.

Thus, the system’s variables can be consider as stochastic variables and the interactions

between particles can be taken into account.

The ergodic viewpoint locates the meaning of the probability of the system to be in

a particular phase space configuration as the fraction of time the system spends in that

phase to the total (infinite) time it spends in all phases.3 Characteristically this is done

by coarse-graining the phase space into a set of discrete states and then postulating a con-

stant probabilistic law describing the transitions between states. For this reason the ergodic

perspective makes statistical and probabilistic assertions about measurable frequencies and

that what is measured is a time average “long enough” for the equilibrium properties of the

system to be established. How long is long enough is an endless source of controversy. Fluc-

tuations arise by superimposing perpetual “statistical randomness” to the micro-dynamical

laws that are posited as governing the system. Despite the considerable di↵erences in the

interpretations and philosophical perspectives on the foundations of non-equilibrium statis-

tical mechanics, there does seem to be unification around a common set of mathematical

methods that U�nk (2007) refers to as the framework of stochastic dynamics. Stochastic

dynamics replace a deterministic dynamical characterization of the evolution of the state

of system for an explicit probabilistic law of evolution and have been widely adopted in

economics and finance and more recently in political economy. In economic applications the

economic process is frequently modeled with stochastic di↵erential equations, typically Itô

processes driven by Brownian motion of the form:

dX
t

= µ(X
t

, t)dt+ �(X
t

, t)dW
t

(1)

Here X
t

is a state vector of process variables, W
t

is Wiener process, or Brownian motion vec-

tor, µ is vector-valued drift-rate function, and � is a matrix-valued di↵usion-rate function.

The Wiener process ensures that as a continuous time stochastic process X
t

only under-

goes small normally distributed changes and is independent of its past behavior ensuring

3
Boltzmann’s motivation for the ergodic approach was in part “to eliminate the seeming arbitrariness of

the probabilistic hypothesis used earlier to derive equilibrium features.”(Sklar (1993) pp.45)
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the Markov property. This assumption of fixed transition probabilities leads, along with a

“master equation” such as the Fokker-Plank equation, to the kinetic equations describing

the monotonic movement to the equilibrium stationary distribution of the state vector X
t

.

The Fokker-Plank equation for the density f(x, t) of the random variable X
t

is:

@

@t
f(x, t) = � @

@x
µ(x, t)f(x, t) +

@2

@x2

D(x, t)f(x, t) (2)

where the di↵usion coe�cient D(x, t) = �(x, t)2/2. The stationary distribution is defined

as one for which f(x, t) is constant over time and is reached as t ! 1 for all initial condi-

tions. The stationary distribution f ⇤(x) is the solution to the Fokker-Plank equation when
@

@t

f(x, t) = 0, implying the following condition:

@

@x
µ(x)f ⇤(x) =

@2

@x2

D(x)f ⇤(x) (3)

Such stochastic drift-di↵usion models represent the thermalization (equilibration) pro-

cess for a single particle. Because the equilibrium equation is a single equation defined by

two unknowns, solving for µ(x) and D(x) is an underdetermined problem. This underdeter-

mination is customarily dealt with by fixing a constant di↵usion D(x) = D which eliminates

one degree of freedom. Methodological and interpretive issues with the ergodic approach to

the foundations of statistical mechanics are discussed in Callender (1999), Sklar (1993) and

Redhead (1995). These issues, as they relate to the study of economic systems, are discussed

below in section 6 as well as in dos Santos (2020).

4.2 Applications to Political Economy

There have been several important contributions since Farjoun and Machover extending

ergodic statistical equilibrium reasoning to political economy.4 One of the most novel papers

that emerged in the last ten years that applied these statistical equilibrium methods to

political economy was Alfarano et al. (2012). This paper recast a long tradition in the

industrial organization literature on firm growth rates (Bottazzi & Secchi, 2006; Bottazzi,

Li, & Secchi, 2019; Dosi, 2007; Ijiri & Simon, 1977; Simon & Bonini, 1958; Steindl, 1965)

in terms of classical political economy. Alfarano et al. propose from a classical perspective

that the persistent entry and exit of firms in search of the highest rate of profit generates

a negative feedback that stabilizes the profit rate distribution into a statistical equilibrium

4
See Föllmer (1974) for an early ergodic approach to modeling equilibrium in economic systems.
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distribution. They initially derive the model by applying Jaynes’ maximum entropy principle

and attempt to map entry and exit behavior of firms to a single moment constraint by

interpreting competition among capitalist firms as generating a constraint on the dispersion

of profit rates around the average. The MEP with this constraint is expressed as:

Max
f(x)�0

�
Z

f(x) log f(x)dx

subject to

Z
f(x) dx = 1

and

Z
f(x)

����
x� µ

�

����
↵

dx = 1

(4)

The solution is given by the exponential power or Subbotin distribution (Subbotin, 1923),

which is a three three parameter unimodal symmetric distribution capable of generating a

wide range of distributions including the Normal (for ↵ = 2) and Laplace (↵ = 1):

f(x) =
1

2��(1 + 1/↵)
e�

1

↵

|x�µ

�

|↵ (5)

and appears in Figure 1 for a range of parameters.

α=�

α=�

α=�

-4 -2 2 4
x

0.1

0.2

0.3

0.4

0.5

f(x)

Figure 1: Subbotin distribution with ↵ = 1, 2, 5, µ = 0, and � = 1.

The authors argue, however, that the principle of maximum entropy does not permit them

to interpret the model parameters in any economically meaningful way and thus turn towards

stochastic methods. They introduce a stochastic drift-di↵usion model capable of generating a

stationary Subbotin distribution on which they base subsequent research (Mundt, Alfarano,
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& Milaković, 2016, 2020) and is of the form:

dX
t

=
D

2�
sign(X

t

� µ)

����
X

t

� µ

�

����
↵�1

dt+
p
DdW

t

(6)

Assuming zero correlation between idiosyncratic shocks and the individual firm’s profit

rate fixes the di↵usion function as a constant D(x) = D and permits an expression of the

drift function, which is used as the basis for interpretation of the model parameters. The

empirical fits to firm-level data for long-lived firms are compelling and o↵er solid evidence

against the normality of the profit rate distribution. While Alfarano et al. (2012) provides

a convincing argument for looking at capitalist competition as a basis for understanding

the generative mechanism behind the statistical equilibrium profit rates and growth rates

and a parsimonious model to predict profit rate distributions, several of their claims and

assumptions are worth considering in critical detail.

First, their claim that the principle of maximum entropy does not permit them to in-

terpret the model parameters in any economically meaningful way is a consequence of their

model choice and is not true for of maximum entropy models in general (see Golan (2018) for

a thorough treatment on maximum entropy models). Typically, the parameters of a max-

imum entropy distribution correspond the the Lagrange multipliers associated with each

constraint and thus have a direct interpretation as the marginal amount of information a

constraint contributes to the reduction of the entropy of the statistical equilibrium distribu-

tion. From an economic perspective, the maximum entropy problem is exactly like the type

of constrained optimization problems one routinely encounters in microeconomic theory and

thus the model parameters can be understood readily as the “shadow-price” representing the

constraint. If the constraints are clearly articulated from economic theory the parameters of

the model should be directly interpretable.

Second, it is not clear that the stochastic methods align with the authors theoretical

position. They emphasize that the non-normality of the profit rate distribution violates the

assumption of statistical independence leading them to consider the interactions of capitalist

firms instead of the detailed characteristics of the individual firms. But it is unclear whether

the interactions of competing capitalists are well captured by an analogy to the collision of

weakly-interacting particles in a thermodynamic system. There is good reason to believe

competition among firms generates rather complex interactions and long-ranging interde-

pendencies of firm profit rates which violate Markov and multinomial assumptions (see 6

below).

Lastly, the authors ultimately put themselves in an awkward and unnecessary position
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by conflating the unobservable entry and exit of capital in specific markets with the ob-

servable birth and death of firms in a particular dataset. It is not clear that the birth and

death of firms is theoretically relevant to the argument of profit rate equalization. A single

firm can, and for large established firms almost always do, contemporaneously compete in

many di↵erent markets. Because firm balance sheets do not capture the detailed realloca-

tion of capital from one of line of production to another the entry and exit of capital is

unobservable. It might also be argued that the theoretically relevant notion of a “market”

makes the detailed dynamics of the allocation of capital unobservable in principle. This

point is important because it underscores the sources of incomplete information that make

the economic problem underdetermined and ill-posed. If the observable birth/death of firms

determines the equalization of profit rates then the problem of inferring the joint statisti-

cal equilibrium distribution (from which the marginal distribution of profits rates can be

derived) is not underdetermined (see Scharfenaker and Foley (2017)). Instead of identify-

ing the underdetermination of the problem in entry/exit the authors shift the focus to the

unobservable interactions of competing firms which understandably leads them to consider

stochastic explanations.

Similar to Mundt et al. (2020), Shaikh and Jacobo (2019) and Shaikh (2020) take an

explicit ergodic perspective to profit-rate and wage-rate equalization through the use of

stochastic models. Like Alfarano et al. Shaikh posits a negative feedback mechanism that

stabilizes incomes and profit rates and attributes the stochastic element to positive and

negative shocks. Importantly noting that these shocks ensure that intentions of individual

workers and capital need not be realized. To represent the process of turbulent arbitrage

Shaikh attributes the drift term in a stochastic equation to the entry and exit movements

induced by di↵erences in variables (i.e. wage and profit-rate di↵erentials) that leads to the

equalization of the variables to their means and the di↵usion term to the e↵ects of ongoing

shocks that leads to a persistent distribution of the variables.

Regarding profit rates, he argues that a good representation of the inter-industry com-

petitive process is captured by the regulating capital which is well represented by the linear

Ornstein–Uhlenbeck process:

dr
t

= �✓(r
t

� 1)dt+
p
�dW

t

(7)

This stochastic equation generates a stationary Gaussian distribution. In contrast to

Alfarano et al. Shiakh looks at industry profit rates and argues for the normality of the

statistical equilibrium profit rate distribution based on Eq. 7. Following Yakovenko and
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Silva (2005) and Shaikh et al. (2014) Shaikh identifies the distribution of income as mixture

of distributions, one representing the bulk of labor income and the other property income,

representing the tail of the distribution. He argues that the same classical logic of profit

rate equalization through turbulent arbitrage can explain wage rate equalization, but that

the strict positivity of labor incomes requires the use stochastic models that are logarithmic

in wages w
t

. He o↵ers two such models, one that is log-linear and the other that is log-log

form:

d logw
t

= �✓(w
t

� 1)dt+ �dW
t

d logw
t

= �✓ logw
t

dt+ �dW
t

(8)

These equations give rise to Log-Normal and Gamma stationary distributions. For prop-

erty income ⇡ = a⇢ which is equal to the product of the stock of financial assets a and the

rate of return ⇢ he derives the log-linear and log-log models:

d log ⇡
t

= (� � ✓)(⇢
t

� 1)dt+ �dW
t

d log ⇡
t

= �(� � ✓) log ⇢
t

dt+ �dW
t

(9)

These equations give rise to the Log-Normal and Power Law stationary distributions. While

Shaikh does not commit to a specific parameterization, he notes that both forms appear

to fit the profit rate and income data reasonably well. As a methodological point, Shaikh

argues in favor of the ergodic approach because it permits prediction of economic phenomena

as the result of explicit deterministic economic processes. While the stationary distributions

turn out to be entropy maximizing, there is no good reason to think entropy maximization

should be an aim in itself. Reddy (2020) favors this position as well.

Again, the question remains whether stochastic di↵erential equations represent the rel-

evant economic processes they are posited to and whether the conditions that sustain the

statistical equilibrium should be taken into explicit consideration in the relevancy of the

theory. From this perspective complex economic processes such as profit rate equalization is

presented in a highly reduced form that attributes all “interactions” to a stochastic Wiener

process. The drift-di↵usion model postulates mean reversion and persistent dispersion driven

by small independent Normally distributed memoryless shocks acting upon an individual

particle. Statistical equilibria defined by drift-di↵usion models thus requires all individu-

als follow trajectories that over time trace the same distributional form as the population

cross section. The logical implication is the reduction of the functioning of the system to an
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ensemble of equivalent individuals collectively doing the same thing. This approach imme-

diately raises the question about individualist reductionism and the actual social content of

the theory (dos Santos, 2020).

5 Macroscopic Approaches

5.1 Background

The macroscopic approach dispenses away with notions of ergodicity in favor of probabilistic

foundations for inferring the statistical equilibrium distribution. Formally the macroscopic

approach begins with Boltzmann’s original derivation of entropy as a combinatorial mea-

surement of the number of micro-states consistent with macroscopic constraints, but was

fully developed by Gibbs as a radically di↵erent view from the ergodic perspective.

Consider a system with N individual components each defined by ⌫ states, which may

be observable or unobservable. A complete state-space description would be X{N,⌫} =

{x1,x2, ...,x⌫} where xj = {xj

1

, xj

2

, · · ·, xj

N

} is a complete description of state variable j

across all N individual components. In statistical mechanics N may be the number of par-

ticles in an ideal gas and ⌫ = 6 represents the position and momentum of each particle

in three-dimensional space. In an economic setting N may represent the total number of

individuals or households in an economy defined by states of income, education, preferences,

race, etc. or it could represent the total number of firms characterized by their states of size,

age, performance, etc..5 The complete description of the system would requite we specify

all N⌫ degrees of freedom. Microfoundations in orthodox economic theory hopes to derive

aggregate properties of the system by having a completely specified (possibly dynamic) the-

ory of the evolution of these ⌫(t) states across all N agents. When N or ⌫ is large a full

description of the system is computationally unobtainable.

The physicist Ludwig Boltzmann realized that despite the impossibility of a full micro-

scopic description of the system, it was possible to derive aggregate macroscopic properties

by using a statistical approach that summarized the system with a coarse-grained ensem-

ble. By partitioning the state space of X{N,⌫} one obtains a macroscopic description of

the system characterizing the coarse-grained frequency of individuals across discrete states

F(⌫) = {f(x1) · · ·f(x⌫)} where f(xj) = {nj(1), nj(2), ..., nj(K)}, K is the number of coarse-

grained bins, and nj(k) is the number of individuals in bin k across state space j.
P

k

nj

k

= N

5
Theil (1967) awkwardly took money as the unit of analysis rather than individuals in his derivation

of the Theil index of inequality. As discussed in dos Santos (2020) units of money are indistinguishable

and thus Theil’s error was analogous to the error Bose (1924) and Einstein (1925) recognized in the use of

conventional multinomial statistics to the analysis of ensembles of Bosons.
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is the total number of individual components distributed across state j. The precise state

j and identity of each individual within each bin is a description of the microstate of the

system and the histogram f(xj) describes the macrostate which is the distribution of state j

over the N individual components. Many di↵erent configurations of individual components

in state j will lead to the same distribution of individuals over K bins so that any macrostate

will correspond to many microstates. The number of ways a particular macrostate can be

realized is the multiplicity of the system which is measured by the multinomial coe�cient:

W =

✓
N

nj

K

◆
=

N !

nj

1

!nj

2

! · · ·nj

K

!
.

Using Stirling’s approximation for large N , log(N !) ⇡ N log(N) � N for N >> 1, the

logarithm of the multiplicity is expressed as the entropy of the system:

H =
log(W )

N
= �

KX

k=1

pj
k

log(pj
k

),

where pj
k

=
n

j

k

N

. If all N components had identical state j the macrostate of the system

can only be realized in one way since all components share the same bin. In this case the

multiplicity is W = 1 and the entropy is minimized at H = 0. When nj

1

= nj

2

= ... = nj

K

individual components are partitioned equally across all levels of state j and f(xj) = 1

K

for

all k and entropy is maximized at H = log(K). As the system’s components become more

spread out or evenly distributed across the K bins the ways in which a particular histogram

(macrostate) can be realized or configured increases dramatically. In this sense entropy is

a measure of the dispersion of components and is bounded by the degenerate distribution

(minimum entropy) and the uniform distribution (maximum entropy).

In 1948 Claude Shannon developed his theory of communication and axiomatically de-

rived the entropy equation as a measure of the information content of a random variable.

The physicist Edwin T. Jaynes (Jaynes, 1967; Jaynes, 1957, 1979) recognized Shannon’s

theorem as providing a logical basis for understanding the entropy concept in statistical

mechanics. In a series of articles over several decades Jaynes argued (Jaynes, 1983; Jaynes,

1979) that Shannon’s information theory answered many of the open questions in statistical

physics by clarifying the epistemological nature of the probabilistic assertions in statistical

mechanics, that is, that probabilities are an expression of what we know about a system,

not an ontological feature of a system itself.
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Incorporating Shannon’s theorem into statistical mechanics led Jaynes to propose the

maximum entropy principle of inference. Jayne’s MEP is an operational rule for applying

Laplace’s Principle of Insu�cient Reason (or, as Keynes put it, the Principle of Indi↵erence).

It states that when making inferences about any system in which our knowledge does not

permit deductive reasoning, it is reasonable to expect to observe behavior in line with dis-

tributions or macroscopic states achieving maximum entropy across all macroscopic states

or distributions compatible with our knowledge. The distribution that maximizes entropy

is both the most probable distribution in the sense that it can be realized in the greatest

number of ways and is the most unbiased distribution as it only takes into account the in-

formation put into the calculation. Jaynes maintained that because Gibbsian equilibrium

distributions maximize the multiplicity of a macrostate under certain constraints it can be

rationalized in terms of the MEP. From the MEP perspective, the foundations of statisti-

cal mechanics can be justified without any appeal to the detailed dynamical features of a

system or disputable properties of ergodicity “if we are willing to pay the price. The price

is simply that we must loosen the connections between probability and frequency.”(Jaynes,

1979, pp.26) Of course, the Jayesian perspective is not without controversy. Much of the

disagreement is ultimately tied to the broader disputes over the Bayesian interpretation of

probability theory and the questions surrounding transformation groups, though others are

concerned with the general limitations of the MEP (Seidenfeld, 1986; U�nk, 1996).

5.2 Applications to Political Economy

A diverse range of recent contributions to political economy have adopted the macroscopic

approach to statistical modeling. Drăgulescu and Yakovenko (2000) provided initial theo-

retical considerations to macroscopic constraints that generate exponential distributions in

economic outcomes by arguing for the relevance of certain conservation principles exchange-

based economic systems. The authors posit a conservation of money in exchange which

generates the exponential distribution as the statistical equilibrium distribution of income.

Such conservation principles have become standard in the econophysics literature and have

been criticized and discussed at length (for example in dos Santos (2017), Gallegati, Keen,

Lux, and Ormerod (2006), Jr. (2016), Rosser Jr. (2008a, 2008c), Scharfernaker and Yang

(2020)). While there are many economic situations in which such conservation principles can

be rationalized as a relevant macroscopic constraint, for example concerning the allocation of

a scarce fixed resource, the argument does not hold much water when applied more complex

social processes such as those that concern the distribution of incomes and profit rates.

More recently, Scharfenaker and Semieniuk (2017) attempted to distance explanations
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of statistical equilibrium from crude physical analogies and instead situate the statistical

equilibrium model in well articulated economic theory through the use of Jaynes’ MEP. The

authors take up the question of the determinants of the equilibrium profit rate distribution

and propose a maximum entropy model that could broadly capture the statistical features

of the profit rate distribution with a structural break. Two models are considered, one

constraining the mean of the absolute value of profit rates:

Max
f(x)�0

�
Z 1

�1
f(x) log f(x)dx

subject to

Z 1

�1
f(x) dx = 1

and

Z 1

�1
f(x) |x� µ| dx = c

(10)

which gives rise to the Laplace distribution and is fit to the pre-neoliberal period and two,

doing so piecewise around the central moment:

Max
f(x)�0

�
Z

f(x) log f(x)dx

subject to

Z 1

�1
f(x) dx = 1

and

Z
µ

�1
f(x)(µ� x)dx = c

1

and

Z 1

µ

f(x)(x� µ)dx = c
2

(11)

which generates the Asymmetric Laplace distribution and is fit to the neoliberal period.

Like Alfarano et al. (2012) the authors maintain an implicit classical theory of competition

and only consider the reduced-form single moment constraint in their model allowing for an

additional moment in the later years to account for persistent asymmetries in the profit rate

distribution.

The economic interpretation of the constraints is developed in dos Santos (2017), Schar-

fernaker and dos Santos (2015) and dos Santos and Scharfenaker (2019), which applies the

MEP to modeling the statistical equilibrium distribution of Tobin’s q. The proposed maxi-

mum entropy program considers the two relevant macroscopic constraints as the first moment

E(x) = c
1

2 R, and the absolute first moment E(|x|) = c
2

> 0, which equivalently gives rise

to the Asymmetric Laplace distribution as the statistical equilibrium. These constraints are

rationalized in the following way. First, the state variable (profit rates or q) is a socially
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scaled variable meaning that individual values are normalized by average or social measures

of themselves and generate constraints on the mean. For example, the average profit rate is

determined by actions of all capitalist firms interacting through competition and is imposed

upon all capital as macroscopic constraint. Second, the constraint on the absolute first mo-

ment is shown to reflect the obstacles to realizing arbitrage opportunities, which can and

do arise in a multitude of ways. The parameters are shown to be directly interpretable as

aggregate measures of speculative behavior, the informational content of prices, and of the

allocative performance of capital markets.

In a separate line of work, dos Santos and Yang (2020) argue for critical considerations

about the nature of interactions of capitalist firms. They argue that capitalist competition

likely produces complex long-ranging interactions that rule out ergodicity and the use of

simple stochastic di↵erential equations as well as Shannon entropy as the correct entropy

measure. As formally detailed by Thurner, Hanel, and Klimek (2018) complex systems

characterized by strong interactions are not generally representable as multinomial systems

because their phase-space volume is not conserved. The non-conservation of phase-space

volume implies that the competitive process e↵ectively rules out some configurations of the

system (i.e. micro-states) as it evolves in time. It turns out that for such non-ergodic or

self-organizing critical systems the separation axiom of information theory is not valid and

as Hanel and Thurner (2013) show the correct measure of entropy takes the generalized

non-additive c� d form:

S
c,d

/
WX

i

�(d+ 1, 1� c log p
i

) (12)

where � is the incomplete gamma function and c and d are the so-called “scaling exponents.”

The Standard Boltzmann-Gibbs-Shannon entropy is recovered for (c, d) = (1, 1) and the

entropy related to stretched exponential systems arise under (c, d) = (1, d).

dos Santos and Yang (2020) follow the same classical interpretation of profit rate equal-

ization whereby the persistent movement of capital from “low- to high-profitability under-

takings push all rates of return toward an emergent, general rate of return r
g

that acts as the

benchmark measure of the opportunity cost of capital against which all rates of return are

measured.” They interpret this “social scaling” of the profit rate as generating a first moment

constraint along of the lines of dos Santos (2017). While both dos Santos and Yang (2020)

and dos Santos and Scharfenaker (2019) share the same formal constraint, they di↵er in the

entropy functional used in the MEP resulting in di↵erent statistical equilibrium distributions.

Maximizing the generalized 1� d entropy subject to a piecewise first-moment constraint on
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profit-rate di↵erentials x = r� r
g

results in the four-parameter double stretched-exponential

distribution:

f(x) /
(

e(1�(�

l

x+µ

l

))

1/d

l if x < 0

e(1�(�

r

x+µ

r

))

1/d

r

if x > 0
(13)

The authors fit this model to firm-level profit rates gathered from the Amadeus dataset

which contains over 20 million individual European enterprises across fifteen countries. The

model is reported as capturing 99.1% of the informational content of the data according to

Soofi’s (Soofi & Retzer, 2002) informational indistinguishability index indicating very good

measures of fit.

The generalized entropy approach raises several immediate questions. First, while gener-

alized entropies are extensive mappings for systems where strong interactions ensure Shannon

entropy is non-extensive the information ensuring the non-extensivity of a system may not

be easily testable or testable at all. What exactly is meant by “long-ranging” and “strong”

interactions in the context of specific economic phenomena is not clear. Second, the authors

assume the 1 � d entropy functional based on observed profit rate data which appears to

have heavy tails and argue that these empirical regularities justify the use of generalized

non-extensive entropies. While there is certainly a compelling argument to be made for the

“observational approach” to economic theory that begins with the identification of statistical

regularities in the data, it does not follow that that these regularities uncover the relevant in-

stitutional structures that define specific moment constraints or even the appropriate entropy

functional.

Upon closer inspection it appears that many of the statistical equilibrium models dis-

cussed presuppose the existence of a known closed-form distribution with specific mathemat-

ically necessary constraints that can be rationalized in terms of economic theory. Economic

theory appears to follow as an afterthought to the identification of the moment constraints

necessary to derive a presumed well-fitting closed-form model. But, from the MEP there is

no a priori reason to consider the subset of known closed-from distributions as candidate

statistical equilibrium models. This does not suggest that no useful economic interpretations

or even theory development around presumed constraints is possible. But it does imply that

such a strategy is necessary limited to a possibly arbitrary subset of models.

Scharfenaker and Foley (2017) attempt to overcome this limitation and propose a model

in the Jaynesian tradition that attempts to reason from explicit economic theory to the

statistical equilibrium distribution without presupposing the distributional outcome. The

next section reviews this model in detail due its distinctiveness and growing use in statistical
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equilibrium applications.

5.3 Quantal Response Statistical Equilibrium

The quantal response statistical equilibrium (QRSE) model introduced by Scharfenaker and

Foley (2017) is a maximum entropy model that explains the statistical distribution of so-

cial outcomes by considering the fundamental sources of variation that arise in competitive

decentralized economic interactions. This model was first used to explain the equalization

of profit rates (Scharfenaker & Foley, 2017) from a classical Smithian perspective, and has

been used to model induced technical change (Yang, 2018a), fluctuations in housing mar-

kets (Ömer, 2018, 2020), asset price fluctuations (Blackwell, 2018; Scharfernaker, 2019),

and international competition in labor markets (Wiener, 2020). The main idea behind the

QRSE model is to consider a system in which an outcome, x 2 X , is brought into statistical

equilibrium by the purposive actions, a 2 A, of participants in an institutional structure

the generates negative stabilizing feedbacks. An equilibrium of the system is represented by

a joint probability distribution, f(a, x). This equilibrium joint distribution determines the

marginal distributions f(a) =
R
f(a, x) dx, f(x) =

P
A f(a, x), and conditional distributions,

f(a|x) = f(a,x)

f(x)

, f(x|a) = f(a,x)

f(a)

, which are interpretable as the causal forces constituting the

statistical equilibrium.

The first component of the model represents the behavior of the typical agent in terms

of the probability that she will choose a particular action a conditional on the aggregate

variable x and is expressed in the conditional distribution f(a|x). The second component of

the model reflects the impact of the action on the aggregate variable which is expressed in

the conditional distribution f(x|a).
Letting the action set be the binary case A = {ā, a}, where ā represents the positive

action (e.g. a firm entering a market) and a the negative action (e.g. a firm exiting a

market). The joint entropy can be written in terms of the marginal outcome conditional

action frequencies:

H(f(a, x)) = �
✓Z

f (ā, x) log (f (ā, x)) dx+

Z
f(a, x) log(f(a, x))dx

◆

= �
Z

f(x) log(f(x))dx�
Z

f(x) (f (ā, x) log (f (ā, x)) + f(a, x) log(f(a, x))) dx

= H(f(x)) +

Z
f(x)H(f(a|x))dx

(14)
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If there is a non-zero impact of the action on the social outcome then f(x|a) 6= f(x). In

many economic interactions the impact of actions on social outcomes limits the di↵erence in

the conditional expected outcome. This feedback is a central theme in classical political econ-

omy and represents the unintended consequences of individual actions on social outcomes.

The negative feedback of actions on the social outcome constrains the di↵erence between the

expected outcomes conditional on the action to be � > 0. In general this di↵erence arises

from where the actions impact the outcome and can be expressed in the following inequality

E (a|x)  E(x)  E(ā|x)
Z

f (a, x) x dx  ⇠ 
Z

f(ā, x)x dx
Z

f (ā, x) (x� ⇠) dx�
Z

f(a, x)(x� ⇠) dx � 0

(15)

Maximizing entropy will make this di↵erence infinite unless we constrain it to be some

positive value �. Letting �f(a|x) = f(ā|x)� f (a|x) we can write inequality 15 as:

Z
�f(a|x)(x� ⇠)dx  � (16)

Maximizing the joint distribution subject to this negative feedback constraint and nor-

malization we get:

Max
f(x)�0

�
Z

f(x) log(f(x))dx+

Z
f(x)H(f(a|x))dx

subject to

Z
f(x) dx = 1

and

Z
�f(a|x)f(x)(x� ⇠)dx  �

(17)

The Lagrangian associated with this programming problem is:

L(f(x);�, �) = �
Z

f(x) log(f(x))dx+

Z
f(x)H(f(a|x))dx� �

✓Z
f(x) dx� 1

◆

� �

✓Z
�f(a|x)f(x)(x� ⇠)dx� �

◆

(18)

22



The first-order conditions are su�cient to characterize the solution for � > 0:

f(x) =
1

Z(x, �)
eH(f(a|x))e��(�f(a|x))(x�⇠) (19)

Where Z(x, �) =
R
eH(f(a|x))e��(�f(a|x))(x�⇠) dx is the normalizing constant, or partition func-

tion, which has no known closed-form solution.6

Scharfenaker and Foley (2017) define this function as the Quantal Response Statistical

Equilibrium (QRSE) distribution. The final model closure is specifying the conditional

distribution f(a|x), which describes the behavioral response of an agent to the outcome x.

From a CPE perspective the decentralized and uncoordinated nature of capitalist markets

ensures that while individual actions may be optimizing, such as capital seeking the highest

rate of profit, there is no guarantee that optimizing actions lead to optimizing outcomes.

Neither capitalists nor workers are assured the maximum wage rate or profit rate just because

they believed they entered the most remunerative line of production.

5.3.1 Entropy constrained behavior

Shannon’s theorem is a useful and intuitive point of departure for modeling the uncertainty

in a decision environment. It quantifies the amount of choice variability for a given deci-

sion environment and is an increasing function of the number of choices available. Because

Shannon entropy is a measure of uncertainty it can provide a meaningful probabilistic de-

scription of a decision environment by being incorporated into the quantal behavior of agents

as a behavioral constraint. Introducing a minimum uncertainty (entropy) constraint to any

decision problem has a simple intuitive interpretation as representing the perceptual and

control limitations that a↵ect the agent’s ability to determine environmental signals and its

own behavioral determinations in a given decision environment. Assuming the typical agent

conditions their quantal choices a 2 A on perceived signals from their social environment

x 2 X e.g. profit rate and wage rate di↵erentials, we can summarize individual behavior as

responding to a payo↵ function v(a, x) : A ⇥ X ! R. The typical agent’s mixed strategy

in this scenario is defined by the probability distribution f(a|x) : A ! R�0

over the actions

that maximizes the expected payo↵

E(v(a, x)) =
X

A

f(a|x)v(a, x) (20)

6
This partition function under certain transformations reduces to the so called “sophomore’s dream”

(Borwein, Bailey, & Girgensohn, 2004) which has no closed form solution.
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Maximizing expected payo↵ without any further constraints results in the typical von

Neumann-Morgenstern result where the individual always put all weight on the payo↵-

maximizing action and zero weight on any other action. As a probability measure on R,
this is characterized by the Heaviside unit step function:

✓(a|x� x̂) =

(
1 if x � x̂

0 if x < x̂
(21)

Di↵erentiating results in the degenerate delta distribution that puts all weight on the

action with the maximum expected payo↵ x̂:

f(a|x) = �(a|x� x̂) (22)

Imposing a constraint on the minimum entropy of the mixed strategy distribution intro-

duces variation in choice akin to Sims’ “rational inattention” approach (Sims, 2003).

Max
{f(a|x)�0}

E(v(a, x))

subject to
X

A

f(a|x) = 1

�
X

A

f(a|x) log(f(a|x)) � H
min

(23)

The Lagrangian associated with this programming problem is:

L(f ;�, T ) = �
X

A

f(a|x)v(a, x)� �

 
X

A

f(a|x)� 1

!

+ T

 
X

A

f(a|x) log(f(a|x))�H
min

! (24)

The first-order conditions imply that agent’s behavior conditional on the outcome is described

by the logit quantal response (LQR) function:

f(a|x) = e
v(a,x)

T

P
A e

v(a,x)

T

(25)
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The dual representation of this problem maximizes the entropy of the agent’s mixed

strategy subject to the payo↵ of choosing an action being at some minimum.

Max
{f(a|x)�0}

�
X

A

f(a|x) log(f(a|x))

subject to
X

A

f(a|x) = 1

and E(v(a, x)) � V
min

(26)

We can interpret this macroscopic dual problem as maximizing our uncertainty about

the typical agent’s mixed strategy f(a|x) subject to the constraint that agents require a

minimum payo↵ to act, which might be interpreted as a type of participation constraint.

The dual solution is

f(a|x) = e�v(a,x)P
A e�v(a,x)

(27)

In equation (25) the “behavioral temperature” T is the shadow price of obtaining in-

formation and represents the unit informational entropy cost of increasing expected payo↵.

In general, as T declines, we come closer and closer to the zero-entropy solution as the

probability of any non-maximizing action goes to zero because for f(a|x) = 1 the entropy

H = �
P

A f(a|x) log(f(a|x)) = 1 · log(1) = 0. This implies that as long as T > 0 there is a

positive probability for each action an agent will make. As T ! 0, the distribution reduces

to singleton maximal strategy. In general T might be functionally dependent on the payo↵

x, though that case is not explored here.

The simplest example of a choice setting is one in which only two alternative actions are

available as identified above. In this case, the conditional action frequencies can be expressed

as logistic equations. Letting �v(a, x) = v(ā, x)� v(a, x),

f(ā|x) = e
v(ā,x)

T

e
v(ā,x)

T + e
v(a,x)

T

=
1

1 + e
��v(a,x)

T

(28)

f(a|x) = 1� f(ā|x) = 1

1 + e
�v(a,x)

T

(29)

As Foley (2020a) points out, the entropy constrained approach to individual choice theory

does violate the assumptions of consistency and completeness of preferences. But, rather than
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try to rationalize the quantal response distribution in order to preserve these assumptions,

the information theoretic approach highlights the uncertainty of choice and has important

implications for economic theory that are not emphasized in conventional choice theory. In-

formation theory gives meaning and interpretation to the residual indeterminacy of behavior

associated with the LQR distribution. Approaching the problem of individual choice from

an information theoretic perspective leads to the very important conclusion that what is

usually interpreted as random noise is in fact relevant information about the choice setting.

The introduction of the informational constraint also recovers the logit-quantal response

distribution found in the random utility literature without imposing any ad hoc distributional

constraints on the errors that a↵ect decision making, for example that they are Extreme

Value Type 1 distributed. Rather than treating the distribution over the individual’s mixed

strategy as arising from random error of noisy players or oscillating utility, the informational

entropy constrained model gives meaning to the observed dispersion of behavior as the

relative payo↵ of di↵erent actions.

5.4 The QRSE Distribution with LQR Closure

The Quantal Response Statistical Equilibrium Distribution with the Logit Quantal Response

closure allows the expression of equation 19 in terms of a payo↵ function v(a, x) and behav-

ioral parameter T .

f(x) / eHT

(�v(a,x))e�� tanh(�v(a,x)

2T

)(x�⇠) (30)

Where

H
T

(�v(a, x)) = �
✓

1

1 + e�
�v(a,x)

T

log

✓
1

1 + e�
�v(a,x)

T

◆
+

1

1 + e
�v(a,x)

T

log

✓
1

1 + e
�v(a,x)

T

◆◆

(31)

is the entropy of the conditional action distribution. In the simplest scenario the payo↵

is symmetric for each action taken such that v(ā, x) = v(a, x) and equal to the outcome x

expressed as a di↵erential from the agent’s expected average payo↵, or fundamental valuation

of x, E(x) = µ. For example, the payo↵ x may represent the real wage earned by a worker

for entering a particular line of employment or the profit rate realized by a capitalist for

competing in a particular market and µ is equal to the expected rate of return for entering

the market. If agent’s expectations are correct then µ = ⇠. In this case Eq. 32 reduces to
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the symmetric QRSE distribution

f(x) / eHT,⇠

(x)e�� tanh(x�⇠

T

)(x�⇠) (32)

The kernel of the QRSE distribution with symmetric linear payo↵s appears in Figure 3.
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Figure 2: QRSE marginal, joint, and conditional frequencies for symmetric linear payo↵s
with T = 1, � = 1 and ⇠ = 0.

In the limiting case where T ! 0 agents will always chose the action ā whenever x > ⇠

and a whenever x < ⇠ and Eq. 25 reduces to the step function 21 simplifying Eq. 32 to:

f̂(x) / e��|x�⇠| (33)

which is the kernel of the Laplace distribution. The QRSE framework thus explains Laplace

distributed fluctuations of the outcome variable as arising not from agents’ informational

constraints, but from the institutional mechanisms that lead to a feedback of their actions

on the outcome. Because the conditional response probabilities reduce to a degenerate

distribution while the marginal frequencies of the outcome stabilize to a Laplace distribution

it is clear to see that the fluctuations of x are determined jointly by the institutional feedback

constraint and the conditional response probabilities. In contrast to orthodox theory, which

tends to neglect the institutional constraints that engender social interactions while also

assuming zero-entropy behavior, the QRSE model incorporates both institutional constraints

that operate at the macroscopic level and bounded rationality constraints on the individual

that operate at the microscopic level.

While the Laplace distribution implies a zero-entropy constraint consistent with orthodox

approaches, it may be di�cult in many situations to distinguish between T = 0 and T ⇡ 0.
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When T is very low f(x) may appear to be Laplace distributed, but the same conclusions

cannot be drawn from the knife-edge case when T = 0 (Blackwell, 2018; Foley, 2020a;

Scharfernaker, 2019). Thus, the widely used Laplace distribution (Bottazzi & Secchi, 2006;

Kotz, Kozubowski, & Podgórski, 2001; Scharfenaker & Semieniuk, 2017; Stanley et al., 1996;

Williams, Baek, Li, Park, & Zhao, 2017), for statistical equilibrium modeling may be better

understood for those cases with behaviorally relevant theoretical foundations as a quantal

response statistical equilibrium with very low informational constraints.

The other limiting case is when T ! 1 and actions are conditionally independent of the

outcome. In this case response probabilities become uniform. As � ! 1 as well, indicating

� ! 0, the di↵erence between the expected outcomes conditional on the action goes to zero

and Eq. 32 reduces to:

f(x) / e�
�(x�⇠)

2

T

(34)

which is the kernel of the Normal distribution. Thus the Laplace and Normal distributions

are the behaviorally limiting cases of the QRSE distribution (see Blackwell (2018) for further

statistical details of the QRSE distribution). The QRSE distribution with symmetric linear

payo↵s shares many of the same characteristics of the Subbotin distribution discussed above,

but has the benefit of model interpretability.

5.5 Sources of Asymmetries in Quantal Response Statistical Equi-

librium

There are several ways that the QRSE distribution generalizes to produce asymmetric fre-

quencies in the distribution of economic outcome f(x). In many cases the unconditional

expectation of the outcome E(x) is determined at the system level. For example, the aver-

age rate of profit in the classical theory of competition is not determined by any individual

capitalist, but rather emerges as systemic constraint that all capitalists face. Under these

circumstances the outcome x can be understood as a “socially scaled” variable (dos Santos,

2017), which is expressed as a constraint on the average outcome.

Maximizing the joint distribution subject to the negative feedback constraint and nor-

malization we get:
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Max
f(x)�0

�
Z

f(x) log(f(x))dx+

Z
f(x)H(f(a|x))dx

subject to

Z
f(x) dx = 1

and

Z
f(x)x dx = c

and

Z
�f(a|x)f(x)(x� ⇠)dx  �

(35)

The solution is

f(x) / eHT

(�v(a,x))e�� tanh(�v(a,x)
2T

)(x�⇠)e��x (36)

Where � > 0 is the Lagrange multiplier associated with the feedback constraint and � is

the Lagrange multiplier associated with the mean constraint.

As with the Asymmetric Laplace used in Scharfenaker and Semieniuk (2017) and dos

Santos and Scharfenaker (2019) an equivalent specification to 35 is to constrain the feedback

of the action on the outcome in piecewise fashion, which would indicate the possibility of

asymmetric impacts of the action on the outcome. For example, the e↵ect of entering a

market on the profit rate may end up reducing the profit rate more than the increase in the

profit rate in the market exited. The asymmetric impact constraint is

Max
f(x)�0

�
Z

f(x) log(f(x))dx+

Z
f(x)H(f(a|x))dx

subject to

Z
f(x) dx = 1

and

Z
f(x)f(ā|x)(x� ⇠)dx = �̄

and

Z
f(x)f (a|x) (⇠ � x)dx = �

(37)

The solution, with Lagrange multipliers �̄ and �, is

f(x) / eHT

(�v(a,x))e��̄

v(ā|x)
2T

(x�⇠)e��

v(a|x)
2T

(x�⇠) (38)

which appears in Figure 3.
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Figure 3: Asymmetric QRSE marginal, joint, and conditional frequencies for symmetric
linear payo↵s with T = 1, � = 1, ⇠ = 0, � = 0.5 (left) and � = �0.5 (right) .

As is common with asymmetric unimodal distributions that can be expressed piecewise,

some algebraic manipulation shows the equivalence between the two approaches. In this case

the piecewise constraint can be expressed as:

f(x) / eHT

(�v(a,x))e
�
⇣

�̄+�

2

⌘
tanh(�v(a,x)

2T

)(x�⇠)

e
�
⇣

���̄

2

⌘
x

(39)

which shows the equivalence with Eq. 36 with � =
�̄+�

2

and � =
���̄

2

.

As detailed in Foley (2020b) and Scharfernaker (2019) the asymmetric e↵ects may also

emerge from di↵erences in agents’ expectations µ and the actual average value of the market

rate ⇠. Setting � = 0 asymmetries emerge only through the interaction of µ and ⇠.

f(x) / eHT

(x)e�� tanh(x�µ

T

)(x�⇠) (40)

When µ = ⇠ agent’s expectations are correct or self fulfilling. Agents’ actions are deter-

mined by the perception of the social outcome through their estimated “fundamental” value

µ. However, there is no reason to assume that agents’ expectations of the fundamental µ

will be correct. When µ� ⇠ 6= 0 expectations are unfulfilled incentivizing agents to revalue

their estimate of the fundamental through some type of market-based punishment for acting

incongruous with the market.

This formulation is equivalent to specifying asymmetric costs for taking an action (Foley

& Blackwell, 2019) which implies v(ā, x) + v(a, x) = C(a|x). For example, there may be

higher costs associated with entering a market than with exiting a market. With a simple

linear additive cost C(a|x) = c the Asymmetric QRSE can be expressed as:

f(x) / eHT,C(a|x)(x)e
�� tanh

✓
(x�⇠)+

c

2

T

◆
(x�⇠)

(41)
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which is equivalent to Eq. 40 with µ = ⇠ + c

2

. Thus an additive cost o↵ers an alternative

interpretation of unfulfilled expectations, or what Sargent (2017) identifies as the equivalence

between “mistaken beliefs” and the price of risk. Combining these sources of asymmetry the

Generalized QRSE distribution is

f(x) / eHT,C(a|x)(x)e�� tanh(�v(a,x)+C(a|x)
2T

)(x�⇠)��x (42)

The Generalized QRSE distribution is a four-parameter distribution that shares many

of the the relevant qualitative features with the Asymmetric Subbotin Distribution Bottazzi

and Secchi (2011), Mundt and Oh (2019), but has the benefit of being behaviorally founded

and directly interpretable without recourse to stochastic di↵erential equations.

5.6 Applications to the Profit Rate and Income Distribution

Scharfenaker and Foley (2017) derive the QRSE distribution in the context of profit rate

equalization and show that the model is able to account for the fat tails and asymme-

tries observed in the profit rate distribution and permits inference about the most probable

behavior of firms conditional on profit rate di↵erentials. The di↵erence between the QRSE

approach and other statistical equilibrium models of profit-rate equalization is that it derives

the constraints from classical political economic theory directly rather than from mathemat-

ical necessity of a predetermined closed-form distribution. This approach thus permits direct

economic interpretation of the model parameters.

The QRSE model is also able to account for the statistical equilibrium income distribu-

tion. In considering the relevance of the QRSE model to wage rate equalization it is im-

portant to consider how the two variables di↵er. Smith argued the wage rate was bounded

from below by the level of subsistence. The center of gravity for the average wage become a

highly debated topic throughout the 19th century ranging from the “iron law of wages” that

continuously pushed labor back to physiological subsistence to Marx’s theory of the value

of labor power as the costs of reproducing the commodity labor power under average condi-

tions. Capital accumulation and economic growth tends to pull the wage above this level,

but there is some conceivable minimum beyond which workers’ standard of living would

deteriorate appreciably. The mobility of labor and equalization of wage rates in Smith’s

thought experiment and the equalization of rates of surplus value in Marx, tends to be more

di�cult to conceptualize than the mobility of capital primarily due to the life-cycle e↵ects

of individual workers. While a capitalist might conceivably encounter short-run obstacles

to investing in any line of production, such as construction of buildings, start-up costs, mo-
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bilization of labor, etc. the mobility of capital, particularly financial capital, makes profit

rate equalization appear feasible at the individual and social level of production. Individual

workers, however, have a more di�cult time moving between occupations due to a multitude

of barriers such as training costs, geography, access to education, language, and issues of

race and gender. Smith’s notion of the tendential equalization of wages, however, explicitly

abstracts away from the individual life cycle and focuses on the ways social labor can adapt

to needs of social reproduction. The key concept for Smith and Marx, is that labor e↵ort is

comparable in terms of its e↵ects in production across workers and fungible between di↵erent

tasks. From this perspective, the observed heterogeneity of career, education, and training

paths of individuals implies equality of expected outcomes across individuals.

A classical statistical equilibrium theory of the distribution of wages specifically requires

we abstract away from the individual and instead consider the mass of social labor as homo-

geneous and fungible. From this perspective, the distribution of wages is an ex post outcome

of social labor in the abstract adapting to the needs of social reproduction through persistent

balancing of the advantages and disadvantages of di↵erent employments. The main point

in a statistical equilibrium model of wage rate equalization is that the abstract labor of

individual workers can be aggregated in social production despite the subjective quality of

labour e↵ort, and the variety of specific tasks, skills, training, and so forth that constitute

concrete labour.

A statistical model of wage rate equalization then considers the decisions of a typical

or “average” worker to enter a particular line of employment and the aggregate e↵ect of

these decisions on the distribution of wages including the formation of a central tendency

and the persistent fluctuations around this tendency due to the decentralized nature of the

division of labor in a capitalist system. In the view of Smith and Marx this average worker

is an abstraction that is determined at any point in time by the general circumstances of

social reproduction. The other important di↵erence between the profit rate distribution and

the income distribution is that the profit rate is, in the language of statistical mechanics, an

intensive variable that does not scale with the size of the system. Thus the relevant dynamics

are those of a negative feedback. The wage, on the other hand, is an extensive variable that

does scale with the size of the system. The growth of wages, however, is an intensive variable

that stabilizes through negative feedbacks. To put the QRSE model on the right footing then,

consider a variable y = ex for which one can make the transformation of variables to derive

the Log-Quantal Response Statistical Equilibrium (Log-QRSE) distribution:

f(x) / 1

y
eHT

(log y)e�� tanh( log y�⇠

T

)(log y�⇠)e�� log y (43)
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This four-parameter distribution is plotted in Figure 4.
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Figure 4: Log-QRSE marginal, joint, and conditional frequencies for symmetric linear payo↵s
with T = 0.5, � = 0.95, µ = 0, � = 0.

It can easily be shown that the Log-QRSE contains the Log-Normal distribution as a

limiting case, which has a long tradition of use in the study of income distribution (Cham-

pernowne & Cowell, 1998; Gibrat, 1931; Kalecki, 1945; Kanbur & Venkatasubramanian,

2020; Venkatasubramanian, 2017). It is also capable of capturing bi-modalities, which have

been shown to be characteristic of the the income distribution (Scharfernaker & Schneider,

2019; Schneider, 2013). Like the Generalized QRSE model, the Log-QRSE also exhibits

characteristics of widely used, but poorly theorized statistical equilibrium models of income

distribution. Most notably this includes the Generalized Beta of the Second Kind (GB2),

the go-to parametric distribution for describing the distribution of income based entirely on

statistical fit criteria (Burkhauser, Feng, Jenkins, & Larrymore, 2008; Feng, Burkhauser, &

Butler, 2006; Jenkins, 2009). The Log-QRSE the o↵ers a compelling alternative to these

purely fit-based models that is theoretically grounded in the classical political economic

theory of wage rate equalization.

5.7 Considerations on QRSE

There are at least two broad, but related criticisms that have been raised about the QRSE

framework. The first is that the model attributes all distributional outcomes “as reflecting

the limited capacity for information processing of the typical or average individual.”(dos

Santos & Yang, 2020) The second, concerns the limits of the model as a representative agent
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model. As detailed above, it should be clear that there is an important interplay between

the various constraints that define the QRSE model. In the limiting zero-entropy scenario

when agents’ behavior is deterministically described by the step function the statistical equi-

librium distribution is either the symmetric (or asymmetric) Laplace distribution and not

the degenerate Delta distribution. The reason is that the institutional feedback constraint

also contributes to explaining distributional regularities. Only when the institutional feed-

back constraint is “turned-o↵” can all variation be attributed to the probabilistic assumption

about individual choice. The model importantly predicts that without the feedback gener-

ated by the presumed institutions the outcome is Gaussian, which is exactly what would be

predicted by the central limit theorem assuming that the decisions of agents are indepen-

dent and additive. From the QRSE perspective, agents interact through institutions which

generate non-Gaussian outcomes.

To the second point, it seems reasonable to think that observed distributional outcomes

arise for a multitude of reasons including unpredictable shocks, bounded rationality, institu-

tional structures, and the heterogeneity of individuals. Di↵erent models emphasize di↵erent

sources of variation. For example, the concept of a homogeneous labor market naturally leads

to explanations of the variation in income as arising from individual characteristics and not

from institutional structures of capitalism. This point was elegantly demonstrated in Foley

(1994) who derived the statistical equilibrium distribution of market exchange that arises

with transactions at non-Walrasian prices. The implications are far reaching, but not all that

surprising. As is articulated in the fundamental welfare theorems, the Walrasian market is

incapable of generating inequality in outcomes that is not already present in endowments,

technologies, and preferences. Under the Walrasian approach, households of the same type

(same preferences and endowment) will always receive the same bundle of consumption goods

in equilibrium leading to the “equal treatment” property of such systems. When exchange at

non-equilibrium prices become possible identical agents end up with di↵erent final consump-

tion bundles in the statistical equilibrium. The market thus introduces horizontal inequality

among traders of the same type and the welfare theorems no longer hold. By emphasizing

the institutional constraints that are indi↵erent to heterogeneous individual characteristics

the model reveals the inequities structured in market mediated exchange. Only by assuming

heterogeneity of agents (in terms of endowments, technologies, and preferences) does general

equilibrium theory generate Pareto e�cient outcomes.

Observed variation in economic outcomes is undeniably the product of heterogeneous

individual characteristics as well as institutional structures. The QRSE incorporates this in-

formation by summarizing it in behavioral averages. The average can be determined in a large

(possibly infinite) number of ways, but the maximum entropy QRSE distribution ensures
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that the predictive joint statistical equilibrium distribution is overwhelmingly probable. The

QRSE model does not predict any deterministic paths traversed by a representative agent.

Instead, it provides a complete dynamic description of all individual behavior through the

ensemble averages. In other words, the QRSE details a probabilistic description of individual

dynamics based on behavioral averages. Because QRSE summarizes all behavioral informa-

tion in terms of averages, the behavioral parameters µ and T only reflect heterogeneity of

agents indirectly. However, there may many circumstances in which the behavioral averages

di↵er in important ways across di↵erent types of agents. For example, a statistical equilib-

rium distribution of Tobin’s q could be considered as determined by the investment decisions

of corporate managers and outside investors each with investment decisions conditioned by

conceptually distinct institutional and social environments. What would make this model

interesting and distinct from the homogeneous QRSE model is there are two heterogeneous

groups interacting: speculators pricing the stock taking the firm’s investment/financial be-

havior as given, and firm management deciding on investment/financial strategy taking the

stock market as given. These two participants are likely to operate in qualitatively di↵erent

decision environments distinguished, for example, by their time horizon. Other applications

could include the study of labor market outcomes between di↵erent groups as in Wiener

(2020).

One advantage to the QRSE framework that makes it distinct among the various ap-

proaches discussed in this survey is that it o↵ers a “meso-level” account of the determina-

tions of statistical equilibrium. The determination of the distribution of outcomes in the

QRSE model is neither reducible to simple strategic interactions among individual partici-

pants in a game as with conventional quantal response equilibrium or to the reduced-form

macroscopic framework that opaquely subsumes interactions and feedbacks into macro-level

constraints. Instead, it uniquely integrates the two through the meso-level interaction of the

average agent’s behavior with the macroscopic constraints that act upon all agents.

6 Open Questions

There are many unresolved issues surrounding the use of statistical equilibrium methods in

political economy. Given the open questions that remain in the mature field of statistical

mechanics from which they come, there may be little hope these issues will be resolved in

economics. However, our understanding of how these methods operate in social sciences is

evolving and given the history of cross-fertilization of social and physical disciplines, it does

not seem unreasonable to expect completely original developments in economics. At this

point at least three important issues stand out as deserving critical attention.
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The first concerns the relevance of ergodic approaches to economic systems. While the

issues surrounding this question are essentially the same that a✏ict statistical mechanics,

they emerge in a distinct, possibly more compelling way when considered in the scope of

social sciences. Ultimately, these questions concern when it is legitimate to make the as-

sumptions necessary to derive the ergodic distribution. What considerations are given to

substantiating the Markov property? Can one be assured that the stochastic process is in

fact a homogeneous Markov process, or, equivalently, obeys a so-called master equation? In

the ergodic approach the Wiener process is the prime driver of the stochasticity of the partial

di↵erential equation that describes the motion of a representative particle subject to a large

number of small molecular shocks. The statistical e↵ects of the equilibrium distribution thus

broadly follow the Gaussian model of random error which originated as a way of explaining

the variation in observed planetary motions as errors arising from telescopic and microscopic

observations. If the disturbances producing the statistical e↵ects are independent and have

finite variance one can appeal to the central limit theorem to make distributional conclu-

sions. The question then is how compelling is the central limit theorem for explaining the

distributional regularities that emerge in complex social systems? Is it possible to distinguish

between a movement due to Brownian motion and movement due to other e↵ects, such as

increasing returns, purposive behavior, or institutional constraints that are independent of

individual interactions and intentions? As dos Santos argues, this approach provides “poor

conceptual foundation for grappling with the economic or social significance of statistical

regularities” because there is “no scope for explicit consideration of interactions between

individuals that may define irreducibly systemic or macro-level regularities involving all mo-

ments of observed distributions.”(dos Santos, 2020, pp.8-9)

Superimposing probabilistic principles on micro-dynamical laws permits the desired deriva-

tion of the posited kinetic determinations, but does this approach o↵er a statistical expla-

nation of observed macroscopic regularities or merely determine a set of conditions that

guarantee the presumed deterministic laws that govern the system? This problem emerges

in thermodynamics when the hypothesis of molecular chaos (that the collision of two par-

ticles is uncorrelated with their individual velocities and independent of their positions) is

introduced in order to guarantee Boltzmann’s equation applies to the kinetic changes of

non-equilibrium thermodynamic systems. But it remains an open question as to whether

the assumption of a continuous rerandomization of the dynamic evolution of an ensemble

where the Hamiltonian dynamics are repeatedly “turning on” and “turning o↵”, which en-

sures a Markovian representation of the system, is even consistent with the micro-dynamical

laws of the system (Callender, 1999). As Roman Frigg argues, “The main problem with

this approach is that its probabilistic laws are put in ‘by hand’ and are not derived from
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the underlying dynamics of the system; that is, it is usually not possible to derive the prob-

abilistic laws from the underlying deterministic evolution and hence the probabilistic laws

are introduced as independent postulates. However, unless one can show how the transition

probabilities postulated in this approach can be derived from the Hamiltonian equations of

motion governing the system, this approach does not shed light on how thermodynamical

behaviour emerges from the fundamental laws governing a system’s constituents.”(Frigg,

2008)

In an economic context, the Markov assumption generally seems doubtful. Capitalism is

about accumulation and the ways in which accumulation manifests tend to be highly path

dependent (Arthur, 1994; Bowles, 2006). Imposing the same dynamic law on every economic

entity but allowing for idiosyncratic variation does not seem a convincing postulate when

considering important path dependencies. Appeals to the central limit theorem may be

appropriate for certain phenomena, but given the fact that many economic outcomes are

the result of social beings interacting in complex non-additive ways within institutional

structures, central limit theorems seems less convincing as an explanation.

Lastly, it should be worth considering Jaynes’ point that “even if one had succeeded in

proving [the] ergodic theorems rigorously and universally, the result would have been es-

tablished only for time averages over infinite times ; whereas the experiments which verify

Gibbs’ rules measure time averages only over finite times. Thus, a further mathematical

demonstration would in any event be necessary, to show that these finite time averages have

su�ciently approximated their limits for infinite times... such an additional demonstration

cannot be given”(Jaynes (1967) pp.94). For the same reason that the frequency interpre-

tation cannot establish a meaningful interpretation of probabilities from finite samples, the

ergodic approach is forced to substitute the mathematical concept of the limit for the non-

existent infinite sample of observations. Thus, while the ergodic or stochastic representation

of statistical equilibria is a parsimonious and mathematically convenient representation of

economic processes, it seems ultimately to introduce even more unnecessary complications

in applications to social systems than exist in statistical mechanics. The fact that we do not

and can not even possess strong enough behavioral postulates to establish an analog to the

equations of motion or principles of conservation for an economic system has already ruled

out statistical equilibrium thinking in many economists’ minds (Davidson, 1996; Mirowski,

1991). It may ultimately be worth seriously evaluating Jaynes’ goading claim that “It ap-

pears to be a quite general principle that, whenever there is a randomized way of doing

something, then there is a nonrandomized way that delivers better performance but requires

more thought.”(Jaynes, 2003, p. 497)

The second issue concerns the complex nature of economic systems and how it changes
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our understanding about the validity of di↵erent approaches. For example, what entropy

functional is the correct one to use? Are generalized entropies necessary or do they introduce

information unwarranted and thus violate Jaynes’ MEP? As Golan (2018) argues, “Much

work has been done to investigate the large-sample properties of the generalized entropy

function... But the issue we most often have to deal with is limited and possibly noisy

information, which did not come from an experiment and may be ill-behaved.” Thus, when

it comes to including implicit information, like that which would warrant generalized entropy

functional, “it would be better to introduce this information via priors... that way we know

exactly what information we introduced and how these priors were constructed.”(Golan,

2018, pp.391)

A broader related question concerns the meaning of interactions in social and economic

settings and how to represent these in a statistical equilibrium model. The stochastic ap-

proach attributes interaction to the kinetic theory of gasses in which molecules interact

only through collision or possibly further ranging potential interactions. The macroscopic

approach abstracts away from detailed dynamics and subsumes interactions into reduced-

form models capturing the most probable configuration of the system given macroscopic

constraints. Is it important to make interactions explicit, for example by distinguishing be-

tween a movement due to Brownian motion and movement due to other e↵ects in a stochastic

model, or by introducing explicit interaction constraints in a macroscopic model? Making

such distinctions, however, may be di�cult because equilibrium systems are not easily de-

composed into causal links as everything at some level is both a cause and e↵ect of everything

else. Nevertheless it may be important to distinguish between simple additive memoryless

interactions and long-ranging path dependent interactions and the statistical patters each

are capable of generating.

Finally, it seems some consideration should be given to the level of generality in di↵erent

approaches. For example, the combinatorial justification of entropy requires that N must be

large enough to justify Stirling’s approximation while Shannon’s axiomatic entropy requires

no such requirement and can be applied to any problem of inference where information is

incomplete. There is debate surrounding the generalities of di↵erent conceptual foundations

of entropy (Caticha, 2012; Golan, 2018; Gorban, Gorban, & Judge, 2010; Niven, 2007), and

it may be worth considering these issues in terms of the types of questions economists hope

to answer. Ultimately it may be that the decision of what method to use should just depend

on the information we have about the problem that faces us.

The third issue concerns the meaning of statistical explanation in economics. Sklar (1993)

o↵ers a thoughtful discussion on this issue in statistical mechanics and many of the points are

valid in a social setting as well because both areas share similar features and analytical tools.
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However, the logic of explanation of statistical equilibrium in social systems is bound to be

di↵erent from the logic governing physical systems due to nature of intentions and social

interactions. Thus, we might ask whether in explaining the statistical equilibrium features

of profit rate equalization it is acceptable to reduce the process to a stochastic di↵erential

equation where all statistical e↵ects are driven by Brownian motion. Similarly, is it su�cient

to reduce the causal determining process of entry and exit to a single moment constraint

such as the dispersion of profit rates or mean profit rate in a maximum entropy problem?

A recent paper by Reddy (2020) argues “that methods from statistical physics can help

in providing explanations of economic outcomes only if they include adequate attention to

processes and moreover characterize these in an appropriate way, recognizing their specifically

social character.” And “This requires attention to “non-mechanical” processes of interaction,

inflected by power, culture, institutions etc.” It thus seems necessary to keep both the

individual and the interaction end of social phenomena firmly in view when constructing

theories and models rather than to subsume them under opaque mechanical processes. The

QRSE model seems to address this issue because it articulates the process of profit rate

equalization explicitly in the conditional distributions. By arguing that a “process must be

specified in order to provide the causal insight that is needed for there to be an explanation

(for instance, through an appeal to wage and profit dynamics giving rise to a Fokker-Planck

equation)” Reddy (2020) seems to miss the point that processes can be specified statistically

as well as deterministically.

Ultimately, many of these questions are related to the deeper questions about the mean-

ing of statistical and probabilistic assertions in general and thus the meaning of probabilities.

While both ergodic and macroscopic approaches are capable of producing models that can

explain the distributional regularities of social outcomes, it is worth considering the scope of

phenomena each are capable of handling. The ergodic approach shares the same qualitative

and quantitative features with the frequency definition of probability, while the macroscopic

approach tends to favor the Laplacian (or Bayesian) interpretation. The frequency approach

is widely seen as a special case of the more general Laplacian approach due to the necessary

existence of prior probabilities.7 Thus, while both approaches may be capable of explaining

some phenomena, the ergodic approach may reach its limits faster as the problems it is ap-

plied to become more sophisticated. Both approaches may be valid and useful in di↵erent

contexts and one is not necessarily “wrong” to use stochastic approaches and central limit

theorems if the problem at hand permits such methods. But, in dealing with complex social

phenomena one always faces underdetermined ill-posed problems with incomplete informa-

7
Though the introduction of such statistical techniques as “regularization” have aided in the reach of

classical statistics.
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tion that does not easily permit frequency interpretations of probabilities or the existence of

infinite time averages. There seem to be many good reasons to favor more general approaches

that avoid unnecessary technical and interpretive di�culties.

7 Conclusion

Statistical methods began in the human and social sciences and are a natural basis for sit-

uating social and economic theory on firm mathematical and quantitative foundations. The

nature of economic data requires a coherent statistical methodology if there are hopes of

satisfying the minimum criteria of what counts as an explanation of real economic phenom-

ena. A theory should, at the least, be able to reproduce the important features of observable

economic data. Once those features have been identified they define the complementary set

of indeterminate residual features. Di↵erent theories amount to di↵erent choices about what

salient reproducible features of the data are important and consequently what remains as

the residual indeterminacy. Theory that concerns only the central moments of the statistical

distributions of economic outcomes is necessarily limited to explaining only a small subset of

features of far more complex social phenomena. The statistical equilibrium approach recog-

nizes the statistical nature of social and economic outcomes and attempts to explain a broad

set of statistical features as arising from specific economic processes. Some theories empha-

size such processes deterministically and superimpose variation as arising from ontological

randomness. Other theories emphasize such processes statistically deriving the higher mo-

ments of the model by identifying the appropriate set of systemic constraints. While there are

still many unresolved questions about how statistical mechanics can meet specific predictive

and explanatory aims of economic theory, it o↵ers a general methodology for conceptualiz-

ing complex systems that can be configured in an astronomical number of ways and makes

considerable progress on our ability to model and understand the distributional outcomes of

social and economic processes.

The move from conventional equilibrium thinking in economics to statistical equilibrium

thinking in economics brings with it a richer set of concepts and possibilities for prediction

and interpretation of social phenomena. Equilibrium prices and incomes traditionally un-

derstood as abstract centers of gravity are modified to statistical regularities with clearly

articulated distributional consequences. The statistical equilibrium approach provides a

probabilistic rather than deterministic account of social phenomena and thus di↵ers in its

explanatory aims and fundamental postulates. Because the explanatory goals of the statisti-

cal approach are fundamentally di↵erent than traditional equilibrium methods in economics,

the principle analytical resource of probability theory must be evaluated in the context of
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these goals. Conventional econometric accounts of statistical variation in social phenom-

ena are an inadequate framework for conceptualizing statistical equilibrium. The ergodic

and macroscopic approaches both o↵er some degree of explanation, but di↵er in important

methodological and interpretive ways.
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Alfarano, S., Milaković, M., Irle, A., & Kauschke, J. (2012). A statistical equilibrium model

of competitive firms. Journal of Economic Dynamics and Control, 36 (1), 136–149.

Arthur, W. B. (1994). Increasing returns and path dependence in the economy. University of

Michigan.

Blackwell, K. (2018). Entropy constrained behavior in financial markets: A quantal response

statistical equilibrium approach to financial modeling (Doctoral dissertation, The New

School for Social Research).
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Mundt, P., Alfarano, S., & Milaković, M. (2016). Gibrat’s law redux: Think profitability

insterad of growth. Industrial and Corporate Change, 25 (4), 549–571.
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